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IT TAKES TwoO 10 TANGO: PROTEIN-PROTEIN
INTERACTIONS IN THE TRANSLOCATION OF
PATHOGENS ACROSS A BLOOD-BRAIN BARRIER

L. Pulzova®’ A M?ynarcik‘,

E. Bencurova' and M. Bhide™’
‘Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology
andlmmunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
“Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia

ABSTRACT

Blood-brain barrier {(BBB) iz a regulatory interface between the peripheral
circulation and the central nervous system (CNS), which has unigque role in the protection
of the bram from toxic substances and pathogens present in the blood. Many pathogens
mcluding parasites, bacteria, vimses and fungi have the petential to infect the CNS, bt it
s unclear why only a relatively small sumber of pathogens accoumt for the most clinical
cases with nervous disorders. Pathogens may enter the CNS via transcellular penetration,
paracellalar passage andfor via “Trojan horse” mechanism (via infected phagocytes).
Interactions between protein molecules from host and pathogens are crucial to tripger
tramslocation processes. Indecd, it takes two to tango: both host receptors and pathogen
ligands. Umdlerlying melecular basis of BBB translocation by various pathogens has been
revealed in the last decads, however, an ammay of protein-protein interactions between
many of the nevrcinvasive pathogens and BBB remained fully unexplored. Identification
and molecular characterization of these pathogens and host factors mediating BEB
peneiration can open novel ways and perspectives in the development of more specific
dmgs and vaccines strategies. This chapter will give new insight into the varous protein-
protein interaciions that 1ake place in BBB translocations process.
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1. INTRODUCTION

Infections of the ceniral mervous system (CNS) are major cause of morbidity and
mortality throughout the world. A limiting factor in the prevention and therapy of CNS
infections is incomplete understanding of the pathogenesis of neurcinfections at molecular
level mainly because of a lack of comprchensive knowledge about protcin-protein
interactions, which take place during pathogens translocation across blood brain barrier
(BBB).

BBB is a regulatory interface between the peripheral circnlation and the central nervous
system (CNS) [1]. Pathogens exploit several mechanisms that enable them to reach the CNS,
like traversal of BBB or peneiration through neurons by axonal flow. Almost all pathogens
that can cause infection in humans bave polential to infect CNS, but is still unciear why only
a small number are responsible for most cases of meningitis. Neurological symptoms during
the neurvinfections are associated with mode of traversal of BBB and penetration into the
brain. Interestingly, some neuroinfections, for example Chiamydiophilapneumoniae {2] and
Borrelia buredorferi [3, 4] mfections, are reported to be associated with multiple sclerosis
(MS) and Alzheimer’'s disease (AD). However a tangible relationship between these
organisms and neurodegenerative diseases still remains undefined with more rigorous studies,

This chapter summarizes our current understanding of pathogenesis of neuroinvasion, the
BBB translocation and gives new insight into the various protein-protein interactions that take
place in BBB translocation process.

2. A SPECIALIZED WALL "BLOOD-BRAIN BARRIER" AND ITS
BUILDING BLOCKS: BRAIN MICROVASCULAR ENDOTHELIAL CELLS

BBB is a distinctive and protective wall composed of brain microvascular endothelial
cells (BMECs), astrocytes, basement membrane, pericyies and neurons. Some of the unique
properties that differentiate BBB from other barricrs are: (i) presence of the intercellular
“tight junction” (Tj), (ii) absence of fenestrac and reduced level of fluid-phase endocytosis,
and (iii) asymmetrically localized enzymes [5-7]. Under physiclogical conditions, BBB
regulates the entry of endogenous compounds, toxic and drug molecules as well as cellular
infiltration into the CNS. The normal endothelial cell surface 1s a thrombo resistant and
prevents platelet and leukocyte adhesion and activation of any coagulation system. Highly
specialized endothelial cells (ECs) form a tight barrier, which isclates the brain and allows
only few mononuclear cells (such as activated T-cells) to migrate into the CNS. Previously, it
was believed that the CNS is immumoproiected site because of the low expression of major
histocompatibility complex antigens, the low number of antigen-presenting cells in {he
healthy CNS, and the [act that the CNS is not properly drained by a fully developed
lymphatic vasculature [B]. Nevertheiess, recent finding shows that CNS is neither isolated nor
passive in interactions with immune system and that changed the earhier viewpoint [9]. The
brain mecessilates maintenance of homeostasis more than anywhere else in the body. BBE
prevents ton fluctuations frequently occurting in the plasma and averts brain damage. Small
tipid soluble molecules like carbon dioxide or ethanol are able to pencirate through the batrier

wehatively easily via the lipid membranes. In contrast, water soluble molecules aqd
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* system [10].

Tabie 1. Pathogens causing central nervous system infections in human

E. coli, proup B sireptococct, Listeria monocyiogenes, 8. pneumonive, Neisseria
meningitidis, Haemophillus influenzae type B, Citrobacier spp., Borrelia
burgdorferi sensu lato, Trepanema pallidumn, Acinetobacter bavananni,, Serratia
marcescens, Psendomonas putida, Enterococons faecalis, Enterococcus faeciton,
Klebsiella pneumoniae, Meningococews, Salmonella meningitis, Bacillus
anthracis, Bacillus cereus, Francisella twlarensis, Chrysechacterium
meningosepticum, Kingella kingae, Rothia muciluginosa, Mycobacterium
fuberculpsis

Fungi Cryptococeus, Candida albicans, Aspergilius, Zyvgomycetes, Blasiomyces,
Histoplasma capsulatum, Cladophialophora bantiana, Coccidioides immitis,
Pseudallescheria boydii, Arthrographis kalrae, Exophiala dermatitidis,
Ramichloridium mackenzie, Ochroconis gallopava

Plasmodium falciparum, Trypanosema spp., Toxoplasma gondii, Teania solium,
Naeglerig fowleri, Acanthomoeba, Angiostrongylus canionensis,

HIV-1, herpes simplex virus, rhabdovirus (rabies), Influenza virus, parainfiuenza
virus, reovirns, lymphocytic choriomeningitis virus, arbovirus, cytomegalovirus,
flaviviruses (West Nile virus, Japanese encephalitis virus, tick-borie virus, St
Lais encephalitis virus, Murray Valley encephalitis virus), mumps virus,
parvovirus B 19, measles virus, T-cell leukemia virus, enterovirus, morbillivirus
(Nipah and Hendra virus), bunya viruses and toga vimses

Bactena

Parasites

Yiruses

BMECSs are connected with adherens junctions (Ajs) and tight junctions (Tjs). Tjs, the
apical most constituent of intercellular junctional complexes, work as a barrier within the
intercellnlar space and controt paracellular permeability [11]. It also forms a circumferential
belt that separates apical and basolateral plasma membrane domains [12], and shares
hiophysical properties with conventional ion channels, including size and charge selectivity,
dependency of permeability on ion concentration, anomatous mole-fraction effects and
sensitivity to pH [13]. These junctions contain a large number of adhesion molecules,
inchuding vascular endothelial (VE)-cadherin (CD144, cadherin-5), and a homophilic
calcium-dependent transmembrane adhesion molecule. While specialized tight junction
mcludes occhidin, JAM family members, claudins, as well as profeins soch as CD99 and

PECAM-1 (CD31),

3. SPECIAL FEATURES OF BBB AND
1Ts BuLDING BLOCKS: THE BMECS

Infections are quite common, but why do we only see infections of the CNS in rare
occasions? One major preventing factor is the special barrier BBB and its building blocks: the
BMECs. BMECs share many common features with peripheral endothelial cells (ECs);
however, hey possess unique characteristics. BMECs and normal ECs differ from each other
in functional and structural terms. Some of these differences are with respect to cylokine and
growth-related molecules, stress-related proteins, metabolic enzymes and sigmal transduction

" macromolecutes arc unable to cross BBB in absence of specialized carrier-mediated transport

P TR
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proteins [14]. Several Tj transmembrane proteins, inclading occludin, claudin-1, claudin-3,
claudin-5, ctaudin-12, junctional adhesion molceules JAM-A, JAM-B, JAM-C, endothelial
cell-selective adhesion molecule, zonula occlidens proteins (Z0-1, Z0-2), cingulin, T4
antigen and PAR-3, are expresed diffcrentially in BMECs and peripheral vascular ECs [13].
BMECs express more vascular endothelial VE-cadherin and less endothelial nitric oxide
synthase than pulmonary ECs [16]. P-selectin, another cell adhesion molecule, is expressed
relatively higher in the lung than in brain. It is the first cell adhesion molecule whose surface
expression on ECs increases during the inflammation and plays a role in the recruitment of-
inflammatory cells into the CNS. Occludin, an integral plasma-membrane prolein of the ECs
is expressed much higher in BMECs compired to non-peuronal tissues, suggesting that
occludin may be the major regulatory protein that reduces paracellular permeability across Tjs
in BBB [17]. Similarly, rescarchers observed high expressions of Lutheran membrane
glycoprotein, CD46 complement regulator and autoantigen Ro52 at BBB [18, 19].

1t is interesting to note that BMECSs express unique cell surface glycoproleins that are nol
found on other FECs, such as the cerebral cell adhesion molecule, 1.X48, BBB-specific anion
transporter 1, angiogenic factors (vascular endothelial growth factor, follistatin, fibroblast
growth factor 1 and 5) and CXC chemokines with Glu-Leu-Arg (ELR) motifs (epithelial cell-
derived neutrophil-activating peptide 78 and growth regulated oncogene-a} [20].

4. CROSSING OF THE WALL, TRANSCELLULAR VS.
PARACELLULAR TRANSLOCATION

The barrier function of the BBB can change dramatically during various diseases of the
CNS, i.e., during hypertension and cerebral inflaimmation such as multiple sclerosis of
cercbral infections. Enhanced BBB permeability is considered to be the result of either
opening of tight junctions [21] or of enhanced pinocyiotic activity and the formation of
transendothelial channeis {22]. The BBB itself may play an active role in the mediation of the
neurcimmune response either by production of inflammatory mediators or by the expression
of adhesion molecules.

One of the central cvents in the development of neurcinfections is hematogenous
dissemination of pathogens followed by their translocation across BMECs. However, the
translecation event must be well orchestruted by pathogen to evade BBB defense. Such
orchestrated cell-signaling events take place during the translocation of leukocytes across
endothelial barrier. Tn general, leukocyte adhesion and translocation at sites of inflammation
is a two-step process. Weak binding by oligosaccharides and members of the sclectin family
results in short-term interaction (rolling) of passing leukocytes. This is followed by finm
adhesion and trapsmigration mediated by activated integrins and adhesion molecules,;
particularly VCAM-1 and ECAM-1. It is postulated that many pathogens like Borrelia might
mimis the orchestral events in leukocyte transmigration.

Several pathogens are able to cross the BBB and infect central nervous system (Table 1).
Pathogens may cross BBB transcellutary {free pathogen}, paracellulary (briefly opening of the
junctionat complexes allowing transport of free pathogen) and/or by means of infecied
phapocytes (so-called Trojan horse mechanisin) (Figure 1) [23]. In any case, in response o
infection, BMECs undergo dramatic changes in their cytoskeletat siructure, expression-
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activation of cell adhesion molecules, cxpression of gylokines, thrombotic and coagniant
propertics, and permeability to plasma proteins. In the Trojan horse mechimism, pathogen
tirst infects lenkocyles, primarily lymphocytes and/or mononuclear cells, and franslocates the
BBB by hitching a ride across the BHBB [24]. This mechanism has becn suggested for L.
monacytogenes, M. tuberculosis [25, 26} and HIV [27]). Either the transcellular and/ozr the
paracellular route may serve as possible modes ol amoebae entry into the CNS {28]. Both
roules have also been suspested for Cryplococeus negformans [29, 30} and Lyme discaze
pathopen Borrefic buredorferi 31, 32).

In the further paris, we have focused mainly on the transcellular and paracellular traversal
of the microbes, as the majority of host-pathogen interactions at the protein level occur during
these transiocation processes.

Transcellular passage involves penctraiion of the pathogens throngh BMECs, without
evidence of pathogenic organisms between the cells and intercellular junction disruption. If is
engineered by adherence of the pathogen fo the blcod vessels and subsequent pathogenic
entry inte the ECs via pinocytotic or receptor-mediated mechanisms (Figure 1) [33]. It is
possible that some pathogens are able to bind to the host cell receptor by producing a
molecule that resembles a patural host ligand [34]. The role of selective BMEC recognition
sites such as receptor-ligand interactions in traversal process remains unclear yet. However, it
is clear that there is increase in number of microvilli on the BMEC surface similar to other
types of endothelial cells under pathological conditions [35] and increase of ICAM-1
expression on the surface of BMEC caveolae and vacuoles [24]. Passage of pathogen
mediated through mimicking the host’s proteins is designated as “bacteria-directed
trancytosis,” and has been showed mainly for the bacterial invasion processes of both
epithelial and ECs. In recent years, role of cytoskeleton, microtubular, microfilamentous and
probably adhesion proteins was confirmed in modulating molecular and cellular migratory
events across the ECs. Cytoskeletal proteins have been suggested to be involved with
transvascular transport of macromolecules, as well as modulating cell-to-cell adhesion and
may play a specific role in vesicle shuttling [36]. Transcellular traversal of the BBB has been
demonsirated for several bacterial pathogens, such as Escherichia coli [37], group B
streptococel (38, 39), Streptococcus pneumonige [40], Listeria monocytogenes [41],
Mycobacterium tuberculosis [42], Treponema pallidum [43], fungal pathogens such as

Candida albicans [44), Cryptocaccus neoformans [29], and is also suggested for West Nile
virus [45].

The paracellular route is defined as microbial infiitration between bamrier cells. This
traversal involves loosening the Tjs or disturbing the supporting components of Tis, Le.,
basement membrane and glial cells |46]. The paracellular transmigration of the BBB has been
suggested for the Trypanosoma [47] and Treponema pallidum [48]. Either the transcellular
and/or the paracellular rouie may serve as possible modes of amoebae entry into the CNS
[28]. Both routes have also been suggested for Cryplococcus neoformans [29, 30), Lyme
diszase pathogen Borrelia burgdorferi [31, 32) and Treponema.

During the translocation, pathogens breach the bamier either by targeting junctions or
celis. On the other hand, hosi-cell actin cytoskeleton wundergoes through the extensive
remodeling and repairing during pathogen invasion [49-32]. Although the way of BBB
- translocation depends upon the pathogen species, interestingly, some host factors may also
influsnce the mode of the pathogen entry. For example, 1L-15 and CXCLE appear to affect
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the paracellular permeability as an inducers of BBB hyperpermeabilily, while TNF-¢
contributes to increase in transcellular permeability [53].

In general, trans- and paraccllular rovtes differ in respect of physical properties: a) the
migration across the transceliular pathway can be either passive or active as long a3
transmigration through paracellular pathway is solely passive and it is powered by
electrochemical, hydrostatic and osmotic gradients, b) as compared with the transcellular
route, the paracellular route is described by higher electrical conduciance and lower
selectivity, c) paracellular transport is not adjusted with the comparable conductance and !
selectivity in either apical to basal or basal to apical ways; d) paracellular travels have good |
specified values of electrical conductance as well as charge and size selectivity [54]. i
Otherwise, differences include the location of passage.

41

]
5. TRAVERSAL MECHANISMS AND HOST: PATHOGEN INTERACTIONS

5.1. Bacteria

Bacteria have exploited various strategies to penetrate host cells in which ligand-receptor
interactions are inevitable for penetration through BBB (Table 2). Studies in humans and 3
experimental animals point towards a relationship between the level of bacieraemia and the
development of meningitis in infection like E. coli [37], group B streptococei [55)] and §.
pneumoniage. However, for successful translocation merely high bacteraemia level is not
sufficient, unless proper adhesion of bacteria to BBB occurs [23]. :

Esherichia Coli
Recent findings indicate that E. cofi invades human BMECs through ligand-receptor
interactions. Pivotal steps in the pathogenesis of meningitis are microbial binding to BMEC
surface and their invasion. AslA profein, member of the arylsulfatase enzymes family, cleaves
sulfate esters and plays a role in the penetration of the BBB. AslA is expressed under sulfir
starvation conditions [37, 56, 57]. Other membrane proteins IbeA, TheB and YijP are also
important candidates in the invasion of £. cofi into BMECs. YijP is minor protein that has
many features of outer membrane protein, including a signal peplide-like sequence and five od
six transmembrang segmenss af its N fetminus [58). IbeB and outer membrane protein A
{(OmpA) interact with different receptors on BMEC, and the effects of these interactions arc a§
least additive (Table 2). OmpA is a major outer membrane protein, which is highly conserved
amopg gram-negative bactenia. OmpA. interacts with glycoprotein gp96 of BMEC via
glucosamine epitopes that facilitates E.coli invasion {Table 2). It was shown that blocking ¢
OmpA by antibodies inhibits the invasion of E. coli into the brain [59]. ;
FimH, a major adhesion protein, has lectin-like activity with high affinity to mannog
residues, FimH is localized at the tip of the fimbrial shaft. Mannose-recognition doma
induces [Ca”'] surge in human BMEC, which Jeads to actin cytoskeleton rearrangement
FimH also acfivates Ras homolog gene family member A {RhoA}, and this may contribuie §
bacterial entry [60]. Cytotoxic necrotizing factor-1 (CNF-1) of E.coli plays an tinpertant r0
i imvasion of BMEC and fraversal of the BBB. CNF-1 is dermonecrotic, high-molecu
weight protein that activates Rho GTPases by deamidation of glutamine, converting it m§
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glutamic acid, inhibiting GTP-hydrolyzng activily and constitutive activation of Rho,
resuliing in polymerization of F-actin and increased formation of stress fibres [61]. CNF1 has
alsu been suggested to be internalized via receptor-mediated endocytosis upon binding (o a
cell surface of receptor 37-kDa laminin recepter precursor (37LRT)/67-kDa laminin receptor
{6TLR) [621.

Figwre 1. Various ways of pathogen translocation cross BBB.

Pathogens may disrupt the blood-brain barrier and enter into the CNS through transcellular penetration
{la - pinocytosis, 1b — receptor mediated mechanism), paracellular entry {2} or transmigration through
infected leukocytes - Trojan horse mechanism (3).

Group B Streptococci (GBS)

Some GBS molecules, like fibrinogen-hinding protein A [63], PilA, PilB [64], laminin

binding protein [65], beta-hemolysin/cytolysin [66], serine-rich repeat-1 [67], and lipoteichoic

t acid (LTA) [68], mediate interaction of the pathogen with BMECs and penetration of the
BBB. Many of these GBS ligands are known to bind extracellular matix molecules such as
fibronectin, fibrinogen and laminin. GBS ligands also bind host-cell-surface integrins. -

- hemolysin/cytolysin secreted by GBS encourages invasion, conceivably by breaking down

b host barrers to disclose receptors on the basement membrane, such as laminin, which
promotes internalization of CNF-1 [69, 70]. GBS can bind lysine residues of host
plasminogen om its surface [71], whereas, iagd pene plays prime role in advancing GBS
invasion through BBB. This gene encodes an enzyme (homolog of glycosyltransferase) that
plays defined roles in biosynthesis of diglucosyldiacylglycerol, a membrane glycolipid that
works as an anchor for LTA [68].

Previous studies revealed that internalized bacteria are found within membrane-bonded
vacuoles of BMECs and transmigrate without multiplication and are protected from fusion
with lysosomes [23, 72]. Electron microscopy studies bave shown that E coli M.

tuberenlosic and group B streptococci invasion is associated with microvilli like protrusions

at the entry site on the surface of human BMEC [38], suggesting a rearrangement of host cell

| actin cytoskeleton. Actin cytoskeleton rearrangements are necessary for BMEC invasion by

meningitis-causing bacteria, but the signaling mechanisms invelved in actin differ between
meningitis-cansing bacterial species.




Table 2. Host « pathogen proteins interacting during translocation across endothelial cells

Protein ligand Molecular  Coding gene Length  Chemical (General biological Domain Start End Hest receptor
{Synomym) weight (kDa) (Genebank  (amino mature functions of the {atmino acid}
" . [Fathogen] /pl access) acids) protein, possible
way of pathogen
translocation
Mannose-binding 87.416/4.41 mbpl 833 glvcoprotein  mediates the adhesion CXCX repeat 317 330 ND
protein  (MBP) (Q61288-1) of parasites to the host CXCX repeal 602 als
[Acanthamoeba cells, in trapscellular/
castellanii] paracellular translocation
[28, 135]
70-kDa BFBF 50.257/5 64 hphbeTl 523 lipoprotein | transpott, transporter SBP bac 5 0 441 Flagminogen
{plasminopen binding {031313-1} activity, in
profeing paraceltular
[Berrelia burgdorferi] translocation
*. [31, 203]
Emp A 19.57/5.84  erpd, erpdd 173 lipoprotein  paraceflular OspE 41 147 Plasminogen
[Beorrelia burgdorferi] {44781-1) translocation
[31, 87]
ErpC 20.2/5.28 erpC 179 lipoprotein paracellular OspE 41 155 Flasmitogen
[Borrelia burgdorfer!] {044790-1) translocation
[31, B7] i
Erpl 20.6:8.36 erpP, crasp3 136 lipoprotein paracellular OspE 54 169 Plasminogen =
{Complement regulator- (Q95036-1) translocation
aequiring surface [31, 87]
protein 3)
[Brrrelia burgdorferi]
OspA 31/8.77 ospd 273 lipoprotein transmigration of Lipoprotein 1 1 73 Plasminogst
(Cutet surface protein Aj {POCH26-1) ECs, in
[Borrelia burgdorferi] paraceliular

translocation
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Vspl 21.9/8.57
(Surface protein Vapd)
[Borrelia burgdorferi]

Alsl 132.6/4.28
(Agglutininalike

pratein 1)

[Candida albicans)

Enol 47.2/5.54
{Enolase-1, 2-phospho-
glycerate dehydratase,
2-phospho-Dglyveerate
hydro-lvase)

[Candida albicans]

Tae] 38.6/6.77
{Inusitol phospo-
sphingolipid-phospho-

lipase C1)
[Criprococens neaformans)
Tredse 90.6/5.65

(UREA_CRYNE, UREI)

[Crptococens neaformans)

Ypaip 20.4:7.94
[Cryptecoccus negformans]

AslA 607593
[Arylsulfatage, Aryl-
sulfate sulphohydrolase,

AS) GE16)

vapA 214 lipoprotein
{034000-1)

alsi 1260 glyeoprotein
(P46590-1)

[44, 111]
enof 4410 glycolytic
{PF303575-1) gnzyme
iseld 529 sphingolipid
(QIHGES-1)
ure] 833
(QSKCQ6) lase
yps3d 184 ND
(QU0950-1)
osld (h3801, 551 sulfatmse
ECE3783, ared, enyzme
JW3773, gnpB,

amidotrydro-

defense response, in
paracellular
translocation

[31, 88]

adhesion, pathogenesis,
in transcellular
translocation

glycolysis, entry
into host, induction
by gymbiont of host defence
response, in trans-
cellular
translocation

[44, 114]

1on tolerance, heat
stress response, in
tranzcellular
transiocation

[109]

urea metabolic
process, increase
micr venviremental
pIL in transcellular
translocation

[110]

fungel transition,
pathogeniciny

[205]

calcium icn binding,
sulfor metabolic
process, metal ion
binding, hydrolase

Lipoprotein 6

Repeat
domains (1=12}

Fnolase N
Enolase C

P40015

Urease gammal
Urease beta
Utcase alpha
Amidohydral

Calelum-
binding EGF
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Recent studies also indicated that other meningeul pathogens mvade humsan BMECs via
ligand-receptor interactions. For example, 5. pnewmonige iavades BMECs in part via
interaction between cell wall phosphoryicholine and the BMEC platelet activating facior
receptor [40]. Listeria monocytogenss vasion of BMEC has been shown to be mediated by
internalin B [41). N. meningitidis invasion of human BMEC is mediated by bacterial ounter
membrine protein, OspC, binding to fibronectin, thereby anchoring the bacteria to the
integrin aSbl- receptor on human BMEC surface [73). Further studics are needed to
understand contribution of these interactions to BMEC invasion and BBB traversal.

Treponema pallidum

Treponema pallidin can invade through the intercellular junction of aortic endothelial
cells [74], which suggests that usage of paracellular mechanism of penetration of the vascular
endotheliom, but it is unclear whether 4 similar mechanism is involved in 7. pallidum
penetration of the blood-brain barrier. The pathogenic . pelfidum adberes to the vascular
endothelium and readily penetrates surrounding tissues [75]. Lee and coworkers [75] have
also proposed a role of fibronectin in the mediation of the attachment of 7. palfidim to host
cells, including ECs. 1t is also predicted that 7. pallidum inleracis with laminin with its
melecule Tp0751 and may promote fissue invasion [76]. Other studies have supported the
specific adhesion of T, pallidum to vascular endothelium and sepamtion of basement
membranes [75, V7). TpO751 binds to laminin-1, -2, -4, -8, and -10. Tt was also shown that ten
amina acids between the positions 98 to 101, 127 to 128 and 182 to 185 in Tp0751 are critical
for the laminin attachment [76].

T. pallidum induces the expression of ICAM-1 and proceagulant activity on the surface
of HUVEC. ICAM-1 expression in HUVEC is promoted by a 47-kDa integral membrane
lipoprotein of T. pallidum |718]. 47 kDa lipoprotein also induces other adhesion molecules like
VCAM-1 and E-selectin, and promotes adherence of T-lymphocytes to ECs [79]. This
indicates an important role of spirochete membrane lipoproteins in ECs activation and
translocation.

Baorrelin burgdorferi

Neuroborreliosis and earlier described neurosyphilis (Treponema pallidum) are
prototypes for spirochete infection of the CNS. Borrelia strains traverse human BMEC
without obvicus change in the integrity of the host cells [20]. This translocation is facilitated
by host proteases, which are involved in plasminogen activation system and fibrinolysis [80-
84]. The fibrinolytic system lhnked by an activation cascade may lead to focal and transient
degradation of tight punction proteins, allowing B. burgdorferi to invade the CNS. The role of
plasmin in infection is crucial, however, other host proteases like matrix metalloproteases
could also take part in the enhancement of ranslocation [85]. OspE/F-related protein (Erp)-P,
EmpA, and ErpC are significant for the binding of plasminogen [86, 87]. High lysine residue
containcd in these three Hrps (nearly 13% lysine residues) indicates that plasminogen binding
is lysine dependent.

Variable small protein 1 (Vspl) of B. furicatae has been shown to bind 1o the BMECs
[88] and is predicted to be involved in passage of Borrefia through BEB. In addition, B
hurgdorferi is able to adhere to proteoglycans in the cxtracellular matrix of the peripheral
nerves and ECs {89-81]. Borrelia is also capable of stimulaling adhesive proleins like E-
selectin, KCAM-1, VCAM-1, eic., and modulates adhesion receptors [92-94], that renders host
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cells more susceptible to pathogen invasion. Processes in the adhesion receptor modulation
. and exploitation of cytoskeleton-linked pathways (integrin-assoctated signaling) by microbes
arc extensivety reviewed clsewhere [95] {Table 2),

Mycobacterium tuberculosiy

At least 33 proteins of M. tuberculnsis play a role in BMEC invasion. Among these,
g proline ghutamic acid-polymorphic GC-rich repetitive sequences (PE-PGRS) family protein,
: sdhesion component transport transmembrane protein ABC transporicr, polyprenyl
| pyrophosphate synthetase and proline glutamic acid (PPE) family protein PPE29 arc possibly
needed for ECs invasion and/or intracellular survival, Furthermore, transmission electron
- microscopy revealed that mycobacteria - BMEC interactions induce actin cyloskeleton
' reorganization and formation of microvilli-like protrusions to promotc bacterial
L intemalization into human BMEC [42). Last but not least, M. mberculosis also owns
plasminogen binding and activating molecules {30kDa, 60kDa, and 66kDa celt wall proteins)
, through which this bacteria may increase local concentration of plasmin/plasminogen to
¢ disrapt intercellular junctional molecules {96].

. Citrobacter spp.

Ciirobacter spp. are gram-negative bacteria and are associated with neanatal meningitis
f [97]. The unique feature of meningitis caused by Citrobacter spp. is their frequent association
i with brain abscess formation. The pathogenesis of Cifrobacter spp. meningitis and brain
bbscess is not well characterized. C. freundii is able to invade and cross human BMECs in
vitro. Invasion of BMECs by C. freundii was found to be dependent on microfilaments,
mictrotubules, endosome acidification, and de rove protein synthesis. In contrast to other
meningitis-causing bacteria, C. freundii is able to multiply within human BMECs. This may
j be a mechanism whereby C. freundii traverses the BBB via transcellular route [34].

pListeria monocytogenes

- L. monocytogenes, a gram-positive bacterium, causes thombencephalitis in humans and
fanimals. This pathogen has ability to cross mtesiine, placenta and the BBB. Internalin B
{IniB) is an important protein for the invasion of numerous cell lines, such as HeLa (human
prithelial cervical cancer), hepatocytes and human BMECs. Efficient invasion of I.
momocylogenes depends on the InlB, which binds to VE-cadherin [41]. Surface Vip
Jdmo0320), bacterial cell wall anchored prolein, is required for mammalian cells enlry,
icluding BMEC. This protein is also imporiant in late stages of the infectious process [98].

Fhlamydiophila pneumoniae
Chlgmydiophila pneumoniae is characteristically a respiratory pathogen but has
reinvasive character and has been associated with muitiple sclerosis (MS) and Alzheimer's
i (AD) pathopenesis. However, scientific evidence for relationship between this
panism and neurodegenerative diseases still remains controversial, Potential way of
iection is through the junctional complexcs between BMEC, C. preamoniae infection may
pud to endothelial damage, junctional alterations, BBB breakdown that resalt in increased
pression of the zomula adhercns proteins (beta-catenin, N-cadherin and VE-cadherin), and
ereased expression of the tight junctionat protein occludin. These events may be the basis
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for the repulation of paracellular permeabilily while maintaining barrier integrity during C.
pneumoniae infection associaled with neuropatholegies such as MS and AD [2].

Several Chlamydiophila ligands have been suggested to mediated aitachment mchiding
heparan sulfate, chlamydizl heat shock protein Hsp70, OmcB and major outer membrane
protein (MOMP) [99]. C. preumonize may reside and replicaic in diffcrent cell types and
induce a chronic immune activation but little iz known about the mechanisms of C.
prewmonige—induced target cell alteration [10G].

Other Nenroinvasive Bacteria

Filamentous hemagglutinin {(FHA), surface-exposed and secreted protein, plays main role
in the host specificity of B. perfussis. Studics with anti-FHA monoclonal antibodies have
shown that FHA mimics the native ligand for CR3 integrin on ECs and induces endothelial
permeability [101].

Plasmin-binding protein (PAM) of Streptococcus pyogenes is homologous {mimics) with
plycolytic enzyme (GAPDH. Plasminogen with PAM is activated by streptokinase and this
plasminogen remained bound to streptococcal surface. Plasmin bound to bactenal surface
tnactivates chemo-attractants and modulates tissue tropism. In addition, PAM also plays a
role in the breaking of host barriers, e.g., BBB, and promotes dissemination of the bacteria
[102].

The zonula oechudens toxin produced by V. cholerae causes Tj disruption by triggering
sipnaling processes, which include phospholipase C-, PKCa-activation, and actin
polymerization. Zonula occludens toxin along with its human homolog zonulin is able to bind
surface receptor in the brain [103]. Direct influence of bacterial toxin on the BBB alone or in
combination with host’s inflammatory mediators such as nitric oxide, TNF-a and I1-1
enhances BBB permeability [104].

5.2. Fungi

Several fungi have been shown to cavse CNS infections in humans, sither acute or
chronic meningitis or space-occupving lesions. Most of the neurotropic fungi are saprobes
with a worldwide distribution. A considerable number of cases of CNS fungal mfections n
immunocompetent hosts have been reported. Crypiococcus neoformans, Candida afbicans,
Coccidioides immitis. Histoplasma capsidatum are the most common causes of fungal
meningitis. While fungi like C neoformans, Cladophiglophora bantiana, Exophiala
dermaiitidix, Romichloridium mackenzie, Ochroconis gallopava are considered as true
neurotropic fungi [105]. Occurrence of Aspergilius spp., Candida spp. and Zygomycetes in
CNS is sporadic, and they may cause lesions in brain.

Cryptococcus neoformans

Cryptococcis necformans is a common ¢ause of culture-proven meningitis in arcas
where HIV-1 is endemic [106]. Tt can be acquired by inhalation to cause a pulmonary
infection and meningitis. Brain invasion does not require recruitment of host inflammatory
cells [29, 107], which eliminates possibihly of Trojan horse mechanism. Recent studies
mdicate that C. neaformans uses a transcellular mechanism of BMEC taversal [29]) and
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. requites protein kinase C-alpha activation {108]. The CPS1 gene is required for (

b reoformans adherence to the surface protcin CD44 of human BMECs [108].

| dsc! gene encodes an enzyme that hydrolyzes inositol sphingulipids is critical for
controlling the dissemination of pathogen inte the brain. In addition, Iscl regulates
intercelular survival through the protection against acidic, oxidative and mirosative stresses

t ind phagolysosome [109]. An important virulence factor of ¢ neoformans is ureasze. Urcase

F 18 not required for optimal growth in CNS, but recent studies suggest that it is important in

- pelmonary-10-CNS dissemination process and invasion [110].

s Candidz albicans
C. albicans is able to adhere, invade and Iranscytose across BMECs withont affecting the
 integrity of the menolayers by a poorly undersiood process. Condida crosses the BMEC by
 transceltular way [44]. It remains unclear what structures of C albicans play a key role in
: Ivasion and transcytosis in human BMECs. It was shown that expression of the Alst protein
{agghtinin like Als] protein) is responsible for adherence to HUVEC and epithelial cells
[111]. N-terminal domain of Alsl proteins includes three IgV motifs, probable sites
rspousibie for binding activity and the C-terminal conserved kydrophobic sequence has
features of the position for glycosylphosphatidylinesitol [1 12, 113]. Tt is also predicted that
interaction between enolase of Candida and plasminogen system enhances C. albicans
raversal through HEBMEC [114]. Fibronectin, laminin and vitronectin have been shown to
participate in adherence of C albicans to extracellular matrix [115-117). C. albicans invades
sman BMEC from the apical side, crosses the BMEC, and exits from the basolateral side.
il rafficking mechanism is unclear, but the exit of Candida cells from the basolaterat side
Bould occur by exacytosis or by growth of germ tubes across the human BMEC monolayer

j4].

plistoplasma capsulatum

¥ Histoplasma  capsulatum is 3 common cause of fungal infection especially in
nminocompromised individuals [ ] 18]. H. capsulatiem may cause meningitis in 5-25% of its
fictims, especially in AIDS patients. Interaction of & capsulatumY ps3p with microglial cells
Ads to NF-xB activation via the TLR2 pathway [118]. A deeper undersianding  host-
fistoplasma interactios is still needed.

3. Parasites

b Malaria seems to be a major public health probiem in many parts of the tropical warld,
pe of the P. falciparum important virulence mechanisms is the ability of P. falciparum

1. P. falciparm erythrocyte membrane protein (PIEMP-1) mediates endothelial binding
affects barrier integrity. PEEMP-1, encoded by the variable var gene family, binds (o
-1, CD36, chrondroitin sulphate and other trypsin-sensitive binding determinants [122],
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Pathogen matures in parasitized red blood cells, which get attached to BMECs. This process
is mediated by specific molecular adhesive events. This binding is not solely static but cas be
a rolhng inferaction, similar to the early rolling that allows subsequent leukocyte tethering to
ECs during physiological responses to inflammatory stimuli [123]. Gtherd) mechanisms by
which P. faleipariom is able lo cross BBB arc the exposure of phosphatidyl serine, which
promotes adhesion to ECs thrombospondin, and bridging between EC receptors and parasite
ligands by molccules such as fibrinogen [124, 125]. -

Recently, fifty-nine putative Plasmodium apoptogenic genes are known to bave the
potential to cause cell death in parasite-induced cefl [126]. It can be hypothesized that
increased expression and secretion of soluble factors from infected RBCs contributes to
haman BMEC activation and apopiosis, which perturhs the BBB and subsequently directly or
indivectly induces neuroglial apoptosis.

Trypanosoma brucei

Neurological manifestations of sleeping sickness in man caused by Trypancsoma brucei
gambiense and Trypanosoma brucei rhodesiense ave attributed to the penetration to CNS, but
how trypanosomes cross the human BBB remains unclear [127]. The forms of trypanosomes
found in the bloodstream efficiently cross human BMECs by a paracellular route [47]. In
rodent model, the parasite can pass through the BBB across or between endothelial cells.
Interferon-y has been shown 1o have an important role in regulating trypanosomal trafficking
into the brain [128]. A trypanosome apoptotic factor {TAF) expressed by 7. brucei that
mediates apoplosis in mouse and human-BMECs was identified and characterized earlier
[129]. Process of trypanosomal traversal across the human BBB also requires the
participation of a PAR-2-mediated calcium signaling pathway. Work of Grab and his
colleagues (2004) showed that Trypanosoma translocate BBB by generating Ca®* activation
signals by parasite cystein proteases. Trypanosomal cathepsin (brucipain) can initiate BBB
translocatton and increases vascular permeability by interaction with host G protein coupled
receptor (also known as 7 transmembrane receptors).

Acanthomoeba

Pathogenic Acanthomoeba is common canse of keratitis but sporadically causes fatal
granulomatous amoebic encephalitis. The mechanism that the pathogen uses to cross BBR is
still unclear. Some studies revealed the ability of several genotypes of Acanfhiomoeba to bind
human BMEC and cause cytotoxicity in BMEC [130]. Traversal process may involve both
pathogen (adhesins, proteases and phospholipases) as well as host factors (IL-B, IL-«x, TNF-a, -
IFN-y and host cell apoplosis). The overall consequence of these factors is increased
permesbility and/or apoptosis of the brain ECs, which encourages BBR disruptions leading to
CNS invasion [131]. Adhesion to BMEC appears to be an important stcp in invasion of
Acanthamoeba, since non-pathogenic environmental isalates show minimal binding to BMEC
[130]. Phospholipases influence the release of arachidouic acid from the cell surface [132,
133]. Arachidonic acid is & prostaglandin precursor that increases BBB vascular permeability
and nifric oxide production in BMECs [134)]. Similarly, serine proteases and/or mannose-
bindiug protein cause redistribution/alteration of Tj proteins, such as ZO-1 and occludin,
contributing to increased bamicr permeability [135]. Serinc proteases also degrade
extracellular matrix, fibrinogen, albumin and plasminogen [136, i37]. In addition, it is
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ported that during the process of adhesion to BMEC, Acanthamoeba upregulates the
Poduction of proteases [138].

Bxoplasma gondii

* Encephalitis is a scrious complication of the infection with the obligate imtracellular
Brasite Toxoplasma gondii. There arc two possible Toutes by which parasites may cross the
IBB. T. gondii may enter inlo the CNS through infected cells, such as monocytes and
crophages. Besides, the parasites may infeet and destroy ECs [139]. Surface antigen |
BAGI), major tachyzoite surface molecule, has been proposed as a lgand that mediates
PMEC wmvasion [140]. Further studies are needed to ehicidale the mechanisms that arc
prolved in toxaplasmosis of the central nervous system,

4. Yiruses

Viruses probably account for the most cases of meningitis. For the commonest viruses
bsing meningitis—enteroviruses and flaviviroses—this is usually the case; however, viral
beniingitis in immune-compromised individuals or infants leads fo substantial neurological
mplications and a significant mortality. Remnaining viral meningitis and CNS infections are
used by herpes simplex virus (HSV) and flaviviruses, although mumps infection has
pently reemerged [141]. Viruses enter the CNS through several mechanisms: 1) by
enatogenous spread and direct traversal through BBB (enteroviruses), ii) virus particles are
mied across in infected leukocytes (mumps, measles or herpesviruses), iii) axonal flow
pough peripheral and cranial nerves (polio, rabies and HSV) [141, 142].

t The penetration of HIV into the CNS through neurons by axonal flow, as occurs with
pes vinus and rabies virus, is less probable because the CD4 receptor, the main receptor
jt enables HIV 1o infect the cell, is absent on neurons [143]. The Trojan horse mechanism
pransport across BBB is considered to play a crucial role in pathogenesis of viral meningitis
the late phase of AIDS. This model has gained rapid favor, however, recent studies
lenge this model by showing that the vast majority of virions transmitted in trans
pinate from the plasma membrane rather than from intracellular vesicles [144].
. The mechanisms of BBR disruption during retroviral-associated pathologies are not fully
serstood yel. Most of the studies are focused on the effect of soluble molecules secreted by
poted lymphocytes on BBB functions and intercellular TJ organization. In case of HIV
potion, the viral protein Tat has been shown to induce an inflammatory process in brain
othelial cells, or endothelial cell apoptosis [145, 146], and to be able to disrupt the
proellylar TJs.
West Nile virus (WNV)-associated encephalitis is characierized by disruption of the
d-brain barrier (BBB), enhanced infiltraion of immune cells into the CNS, microglia
vation, inflammation and eventual loss of neurons [147, 148]. WNV gains entry into the
5 via the transcellular pathway, without compromising the BBB integrity instead of
peclinlar pathway, in which case it would be expected an increase in WNV RNA at carlier

: points, due to passive diffusion [45]. WNV does not induce cytopathic effect and

pes an expression of clandin-1 and upregulation of VCAM-1 and E-selectin [149].

'_ Tick-bome encephalitis (TBE) virus canses severe encephalitis with serious sequelae in

Rans and can be fatal. The mechanisms underlying how TBEV gains aceess to the CNS are

TR e
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neither completely understood. There are several hypothetical rouics for TBEV traversal
across BBB. These include (i) cytokine-mediated BBE breakdown, (i} “Trojan horse™ theary,
and (iii) virus entry into the vascular endothelial cells of brain capillaries, transcytosis, and
the release of virgs into the brain parenchyma {150).

6. PATHOGEN TRANSLOCATION AND ACTIVATION OF SIGNALING
PATEHWAY IN ECS

Ultimate stage of dissemination for neuroinvasjve pathogens is traversal of BBB. This
requires active enpagement of BMECs wherein  formation of docking structure,
rearganizafion of the cyloskeleton, disengagement of TJ complexes and formation of the
migration pores are the crucial steps for successful pathogen translocation. These dynamic
processes are under the coordinated control of a wide range of signaling pathways, many of
which require a crosstalk beiween pathogen and BMEC through cell surface receptors. Initial
transient engagement of the pathogen to BMEC and formation of docking structure between
pathogen and BMEC lead to further crosstalk via induction of downstream signaling
pathways.

Further, we are discussing about three major pathways that may oceur during pathogen
transiocations,

ICAM-1 Signaling

ICAM-1 has been identified as a key cell adhesion molecnle (CAM) in the leukocyie
traversal to the CNS [151]. Cross-linking of ICAM-1 results in ICAM-1-mediated outside-in
signal transduction leading to activation of the tyrosine kinase p60src, phosphorylation of
cortactin (substrate involved in cortical actin dynamics) [152), mobilization of intracellular
calcium and activation of Rho GTPase {key regulator of actin cytoskeleton). Activation of
RhoA mediates phosphorylation of the cytoskeletal associated proteins focal adhesion kinase,
paxilin and pl30 [153] and thus mcreases BBB permeability, that may be exploited by
pathogen to invade TJs. Clustering of ICAM-1 results in the formation of docking structures
{transmigratory cup) (Figure 2), which anchors and partially embraces circulating cells and
pathogens. 'This event plays an inevitable role in the firm adhesion of pathogens to the surface
of endothelial cells. ’

Other downstream functional events have also been propased for ICAM-1 signaling-
mediated BBB  evasion. ICAM-1 modulates gene expression through activation of
transcription factors such as serum response factor and NFxB [154]. This indicates that
ICAM-1 and other CAMs can regulate gene expression and hence cel] phenotype; this raises
the possibility that CAMs mediated pathways might be evoked during inflammations [155],
and probably also during newroinfections. ICAM-1 signaling alse affects status of Junctional
protems, ICAM-1 engagement enhances tyrosine phosphorylation of the cell—cel] Junction
that correlates with tyrosine phosphorylation of the adherens junction protein VE-cadherin
[79]. VE-cadherin is a key regulator of the EC junction: this suggests that one aspect of
ICAM-1 signaling is junctionai disengagement. TJs discngagement results in a tightly
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controlied and reversihle opening that
tightly controfled parmeability is suffici
BBB still remuin questionable. Daty d

l-amediated signaling resulis in

l ENMYTHELIAL CELL

Figure 2, Suramary of the signalling events associated with paracellular migration of pathogen through
the blood-brain barrier.

Binding 10 CAMs {(ICAM-1 and VCAM-1) triggers diverse signaling pathways within ECs,
Phosphorylation of target proteins, particularly the VE-cadherin complex and cortactin, production of
ROS, activation of Rho family GTPases and calcium signaling are centrally involved. These pathways
all eontribute to the Junctional disruption and/or actin remodeling that is permissive for leukocyte
transendothelial migration to aceur,

Adhesion of pathogen ligand to VICAM-1 signals via Racl-mediated ROS generation. ROS inhibition
of phosphatases and activation of redox-sensitive kinases serve to inerease phasphorylation of
Junctional proteins, which leads to junctiona? disruption and stress fibres contraction,

C40-medliated signal transduction induces the trunseription of a large number of genes implicated in
bost defense against pathogens. This is accomplished by the activation of multiple pathways inchiding
NF-KappaB (Nuclear Factor-KappaB), MAPK {Mitogen-Activated Protain Kinase) and STAT3 (Sipnal
Trapsdicers and Activators of Transcription-3), Activation of C1D40 dependent pathway cavses
sugmentation in the production of proteases like MMP-1, MMP-3 and MMP-9 that leads to disruption
of junctional molecules, thus facilitares Pathogen transiocation via paracellular way.
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CD40 Signaling

Despiie the plethora of studies on CD40 molecule, . our understanding about CD40
signaling in BMECs remains incemplete and controversial, CID40-mediated transduction can
vary amang cell types, furthermore it can vary within the same cell type depending on stage
of differentiation {157]. CD40 is a transmembrane-signaling protein expressed on the surface
of B cells, monocytes, dendritic, epithelial and endothelial cells. However, under resting
condifions, the level of CID40 on microglia is relatively fow but is markedly increased upon
challenge with pro-inflammatory stimuli such as INF-y, TNF-¢ and lipopolysaccharide. Thus,
it seems that CD40 on microglia serves as an amplifier of inflammatory responses in the
CNS. Cellular responses induced by ligation of CIDMD are important in both inflammation and
immunity. Signaling via CD40 is mediated through interaction with a family of proteins
known as fumor necrosis factor receptor-associated factors {TRAFs). Ligation of CD40 on
endothelial cells activates tyrosine kinases and tyrosine phosphatases and affects downstream
gene expression. This leads to production of pro-inflammatory cytokines {IL-1, IL-2, T1.-4,
IL-8, IL-10, IL-12, TNFa and TGEB) [158], chemokines (MIP-1a, MIP-1, MCP-1, ABCD-1
and CCR7), matrix metalloproteases (MMP-1, MMP-2, MMP-3, MMP-9, MMP-11 and
MMP-13), tissue factor, Cox-2 and nitric oxid (NO). It enhances expression of CD54 (ICAM-
1), CD62E (E-selectin) and CD106 (VCAM-1) with a consequent increase in pathogen-cell
binding to the endothelium. Recent study in our laboratory shows that only neuroinvasive
Borrelia, but not non-neuroinvasive strains, make a transient attachment with BMEC surface
via CD40 molecule and induce production of ICAM-1, PECAM-1, MMP-1, MMP-3, MMP-
9, IL-1 and TNFa. While treatment of BMEC with anti-CD40 antibody and subsequent
infection with Borrelia causes downregulation of integrins expression, binding to adhesion
molecules seems to be the main prerequisite for successful translocation of BBB by
pathogens. For example, PECAM-1 appears to play role in guiding pathogen fo intercellular
Junctions (Figure 2}. Activation of ICAM-1 results in actin remodeling, which is important in
migration across brain EC,

VCAM-1, PECAM-1 and ALCAM Sigunaling

Other cell adbesion molecules (CAMs), such as VCAM-1, PECAM-1 and activated
leukocyte cell adhesion molecule (ALCAM/CD166), also contribute to the signaling that
facilitates lenkacyte recruitment across the BBB. The relative contribution of these CAMs
likely determines the extent of recruitment for different levkocyte sub-populations [159].
VCAM-1 associates with the ezrin/mdixin/moesin proteins, which is closely assaciated with
aclin cytoskeleton and promotes its remodeling. VCAM-1 downstream pathway is
predominantly targeted on intercellular junctions and contributes in gap formation mediated
through Rho and Rac-1 activation [160]. k&t was found that infection of endothelial cells with
E. coli, Chiamydiophilapneumonige results in stimulation of wide variety of cytokines,
chemokines (MCP-1, IL-6,7.8,9 and 14} and adhesion molecules (VCAM-I, ICAM-1,
ELAM-1) through NF«p activation [ 161). Franciselfandarensis also exploits VCAM-1 as an
adhesive molccule and selectively activates its downsiream cascade that canses augmentation
of CXCL8. CXCI8 appears to affect paracellular permeability, as an inducer of BRB
hyperpermeability, to host cells as well as pathogens. Recent studics reveal that CAMs not

e L — _
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act as receptors for ligands of pathogens but also act as signal fransducers. While many
g the relevant molecules in the transmigration cascade have been identified, at present it is
ot clear fo whal extent these molecules mediate passage through the transeeflular versus the
pracellelar pathways. Many of VCAM-1-signaling events are similar to those associated
ICAM-1 clustering. JCAM-1 clustering can Jead to VCAM-1 recruitment 1o the
jenaling molecule; therefore, it makes difficult to distinguish between pathways indoced by
gse two CAMs,
The wle of PECAM-] in regulation of BBB traversal is less undersiood. It has been
pown that PECAM-1is employed in leukocyte translocation of endothclium at the site of
ercellular junctions, PFECAM-1 is adhesion receptor that can transduce stimulatory and
bibitory signals [162, 163]. The PECAM-1 also acts as an antaponist of KCAM-1 induced
progine phosphorylation of cortactin and thus inhibits actin cytoskeleton remodeling [164].
i Activated leukocyte CAM (ALCAM) is expressed by immune cells and various non-
ematopoetic cells including BMEC. The tole of endothetial ALCAM at the level of the
BB remains to be established, but under pathological neuroinflammatory conditions, it
heilitates extravasation of immune celis in CNS that can be mediated via heterotypic
feractions with CD6 or homotypic through ALCAM-ALCAM interactions [165]. The
psessment of ALCAM and jonctional complex protein expression in primary cultures of
JMEC associated with mulfiple sclerosis lesions indicates that ALCAM upregulation is
psociaied with a disturbed junctional and cytoskeletal architecture [166]. There are limited
pta about interceltular signaling events, although docking structure was found to be rich in
A molecules. It can be suggested that signaling mechanisms described for ICAM-1
d VCAM-1 are most likely mirrored by ALCAM.

by

7. EXPLOITATION OF HOST’S PROTEASES BY PATHOGENS TO
DEGrADE ECM OF BBB

' In the earlier parts of this chapter, we saw how pathogens employ various ligands to
tivate cell-signaling cascades and take advantage of adhesive molecules and host proteases
 cross endothelial barriers. Amongst all, two mechanisms mediated by host proteases are
nost important for pathogen entry into the CNS—ihe first, plasmin/plasminogen mediated
1.| the second, metalloproteases mediated crossing of BBB. That is why we are trying to
faborate these two mechanisms in detail.

.. smin and Plasminogen Mediated BBB Translocation

[ Gram positive and negative bacteria are able to express surface receptors for proteases
ot digest ECM and components of basal membrane, This is an important stratcgy of
phogens to cross various barriers. Serine protease plasmin degrades many blood plasma
foteins, mostly fibrin clots. In serum, free plasmin is quickly inactivated by a;- and op-
gtiplasmins [167], however, cell surface-associated plasmin cannot be regulated by the

mm inhibitors and degrades high molecular weight glycoproteins such as fibroneciin,
fninin and coliagen IV, which are essential for proper BBB function.
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Most of the baclerial plasminogen receptors are extracellular metabolic enzymes [168]
that fall into two major categones: {a} filmmentous protein structures that are morphologically
samlar to fibrin—fimbriae proteins; (b) non-flamentous surface proteins, usually abundanl
proteins, with enzymatic activity and multiple-binding properties {167]. The noa-filamentous
plasminogen receptors have relatively low affinity for plasminogen, which recognizes the
lysine-binding sites of a receptor molecules [169]. Fimbriae and flagella form a major group
of plasminogen receptors in gram negative bacteria, whereas, surface-bound enzyme
molecules and M protein-related structures possess affinity lo plasminogen in gram pogitive
bacteria |36].

The first-time binding of human plasmin fo bacteria was reported for group A
streplococci in 1987 [170]. Over the next years, exploitation of host’s plasmin and
plasminogen for proteolysis of ECM, mediated by their surface proteins {Table 2), was
showed in many other bacteria like 5. aureus, N. meningitidis, N. gonorrhoeae, . pestis and
B. burgdorferi. Binding of plasminogen to receptors of B. burgdorferi, B. hermsii M.
tuberculosis and group A streptococei takes place via lysine residues [80, 171]. ErpP, ErpA
and ErpC proteins are the major plasminogen-binding proteins of B. burgdorferi [87]. It has
been shown that plasminogen bound to the surface of B. burgdorferi can be activated and
turned into plasmin by urokinase-type plasminogen activator (uPA) to protect the enzyme
from autodigestion [172]. GlaAl, one of the few plasminogen receptors of M. mberculosis,
binds host’s fibronectin to degrade ECM [173]. C. afbicans binds both plasminogen and
plasmin. Plasminogen receptor binding is mediated by Candida enolase, activated by tissue-
type plasminogen activator, while inhibited by z-aminocaproic acid. Binding of fungal
enolase to plasmin is also lysine-dependent and can be inhibited with arginine, aspartate and
glutamate [114]. Direct binding of plasmin and plasminogen in Streptococcus group A is
mediated by three receptors: 1) plasminogen-binding group A streptococcal M-like protein, 2)
a-enolase, and 3) glyceraldehyde-3-phosphate-dehydrogenase [86, 174). Surprisingly, S.
pyogenes protein Prp does not interact with plasminogen and plasmin via lysine, however
only via argimine and histidine residues {175]. 5. agalacfige, 2 member of the group B
streptococcei, binds plasminogen only by the lyceraldehyde-3-phosphate-dehydrogenase [71].

Metalloproteases Mediated BBB Crossing

Matrix metalloproteinases/metalloproteases  (MMPs) are zinc- or cobalt-dependent
enzymes that play a crucial mole in normal function and development of CNS. This large
group includes collagenases, pelatinases, stromoelysins, matrilysin, membrane-type
metalloproteinases and metalloelasiases. MMPs differ in cellular sources and substrate
specificity, but structural domains remain the same [176]. MMPs may alter inflammatory
cytokine activity, cleave cell surface receptors, activate caspase-3, and regulate other MMPs
family members [177-181]. Togother with scrine and ecysteine proteases, they are able to
degenerate and remodulate connective fissues. This damage leads to extravasation of blood-
borne proteins, formation of brain edema and ncuronal damage. Pathopens exploit this
extravasation to cross various barriers including BBB.

Basal level of MMD's cxpression in the brain is low, however, under pathological
conditions {Alzheimer's disease, multiple sclerosis, ancurism formation and cerchral
ischemia) and infections, the level clevates markedly. MMPs are expressed by most of the
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resident CNS cells such as ECs, astrocytes, microgha and neurons, {ogether with the
infiltrating immune cells |182-184].
L Inlection of BMECs with neurotropic viruscs has been connected with decrease and/or
redistribution of ‘1] proteins in vitro and in vive | 183, 186]. Lentiviruses, like HIV-1 and FIV,
are able to infect the brain and cause chronic newrological disease. MMP activity s highly
increazed in HIV-infected cells migrating into CNS. Homan neurenal and glial cells infected
 with thos virus have been shown to produce large amounts of MMP-2 [187]. Puring the West
Nile virus infection, it has been observed that inflammatory cytokines, such as TNF-o,
maccophage migration inhibitory factor and MMP-9, play an essential role in BBB disruption
{I88-190]. Tt is likely that activation of MMP-9 in West Nile virus-infected astrocytes is via
MMP-3 [191].
MMPs alse play role in bactenal meningitis. Tn fact, MMP-8 and MMP-9, but not MMP-
t 2 and MMT'-3, are upregulated in cerebrospinal fluid (CSF) during the meningitis caused by
H influenzae, N. meningitidis and 5. preumoniae [192). T. denticola [193] and cell wall of 5.
 guis strongly stimulates production of MMP-9, whereas zine metalloproteinase ZmpC of §.
| preumoniae cleaves human MMP-9 into its active form [194], which leads to the tissue
 destroction and BBE disruption [195]. MMP-8 is also associated with tissue destruction
 aring S, senguinis, N. meningitidis and Fusobacterivom nuclearum infections [196, 197).
“Tissue destruction by N. meningitidis is a consequence of proteolysis of Tj protein occludin
by MMP-8. Furthermore, MMP-8 activity also participates in BMECs detachment from the
bunderlying matrix that arose during extended time of infection with N. meningitidis [197).
FMeningitis caused by S. prewmonice in the neonatal rats is associated with the higher
expression of MMP-3, MMP-8 and MMP-9 whereas, in rabbits cnly MMP-2 and MMP-9 are
found to be responsible for the impairment of BBB and blood-CSF barriers [198]. M.
Biberculosis uses MMPs more effectively for the tissue and neural damage. Infected
emonocytes induce MMP-9 secretion from astrocytes, afforded by [L-1B and TNF-ue [199].
he importance of MMP-9 in BBB disruption was proved elsewhere by diminishing the
iprocess of BBB disraption in MMP-9 knockout mice [200]. B. burgdorferi causes the release
of MMP-1 and MMP-9 from human cells, while plasmin-coated B. burgdorferi stimulates
pro-MMP-9. This triggers a cascade that leads to degradation of basement membranes [85].
B, burgdorferi-Anaplasma phagocytophilum co-infection of human brain microvascular

¢ fo wse metalloproteinase activity [137]. In peneral, expression of MMP-9 duning the
acterial meningitis is 10- to 1000-fold higher than in the cases of viral meningitis [202].
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CONCLUSION

Almost all bacteria that are pathogenic to humans have the potential to infect the CNS
but it is nuclear why only a relatively small number of pathogens account for most clinica
cases. Recenl studies with the in vitro BBB model provided much insight to the mechanism
of microbial translocation of the BBB. Similarly, multiple mictobial determinants have beer
shown te contribute to the bacterial penetration of the BBB. Complete insight on pathopen-
host BMEC interactions that involve in translocation is crucial for understanding the
molecular basis of pathogenesis of neuroinvasion. Nonetheless, identification and molecula
characlenzation of these bacterial and host factors mediating the bacterial penetration may
lead to new avenues in the development of more specific vaccines strategies.
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